Comparison of the efficiency of mesoporous silicas as absorbents for removing naphthalene from contaminated water
DOI:
https://doi.org/10.14712/23361964.2015.7Abstract
Mesoporous silicas MCM-48 and SBA-15 were synthesized and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy. Adsorption capacity of two mesoporous silica for removing naphthalene from waste water was determined. The results indicate that under similar conditions, SBA-15 had a better adsorption capacity than MCM-48. In this context, SBA-15 was modified using 3-aminopropyltrimethoxysilane and the effect of contact time, adsorbent dose, solution pH and concentration of naphthalene was investigated in batch adsorption systems. Solution pH appeared to be a key factor affecting the adsorption of naphthalene by NH2-SBA-15. The adsorption experiments revealed that a higher percentage of up to 79.3% of naphthalene was adsorbed in highly acidic media (pH of 2). The equilibrium data were analyzed using Langmuir and Freundlich isotherms and nonlinear regression analysis. This revealed that based on the correlation coefficient (R2 = 0.979) the Langmuir model provided the best fit to the results. The adsorption kinetic was determined using the pseudo-first order, pseudo-second order and Elovich kinetic models. Of the kinetics models tested, the pseudo-first-order equation provided the best fit to the results (R2 = 0.991) of the absorption of naphthalene by the adsorbent.
Downloads
Published
Issue
Section
License
The journal applies the Creative Commons Attribution 4.0 International License (http://creativecommons.org/